
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1973

A formal description of SYMBOL
Cheng-Wen Cheng
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Cheng, Cheng-Wen, "A formal description of SYMBOL " (1973). Retrospective Theses and Dissertations. 6190.
https://lib.dr.iastate.edu/rtd/6190

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/6190?utm_source=lib.dr.iastate.edu%2Frtd%2F6190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to heip you understand
markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". if it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
"sectioning" the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

4. The majority of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproduction could be made from
"photographs" if essential to the understanding of the dissertation. Silver
prints of "photographs" may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as
received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

www.manaraa.com

73-25,214

CHENG, Cheng-Wen, 1945-
A FORMAL DESCRIPTION OF SYMBOL.

Iowa State University, Ph.D., 1973
CcHiçuter Science

University Microfihns, A XEROX Company, Ann Arbor. Michigan

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

www.manaraa.com

A formal description of SYMBOL

by

Cheng-Wen Cheng

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Approved:

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1973

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

II. INTRODUCTION OF THE SYMBOL SYSTEM 5

A. Object String 5

1. Blocks and procedures 6

2. Labels 6

3. Conditional statement 7

4. Scope statement 7

B. Name Table 7

C. Stack 8

D. Memory 9

E. Page List 9

F. System Headers 10

III. ABSTRACT SYNTAX OF SYMBOL PROGRAMMING LANGUAGE 11

IV. THE STATES OF THE ABSTRACT MACHINE 18

A. Description of the Components of the State 22

1. Object string 22

2. Name table tree (ntt) 23

a. Data in name table 24

b. Link to structure (LS) 25

c. Data in object string (DOS) 25

d. Label 25

e. Procedure (PROC) 26

f. Formal parameter (PARA) 26

www.manaraa.com

iii

TABLE OF CONTENTS

Page

g. Link 27

h. Global 27

3. Stack (stk) 27

4. Registers (r) 28

5. Memory (m) 29

6. Space available list (sal) 30

7. Dump (d) 30

8. Control (c) 31

B. Initial State 31

V. THE INTERPRETATION OF SYMBOL PROGRAMMING LANGUAGE 33

VI. CONCLUSION 67

VII. BIBLIOGRAPHY 71

VIII. ACKNOWLEDGEMENTS 73

IX. APPENDIX I 74

X. APPENDIX II 77

XI. APPENDIX III 80

www.manaraa.com

1

I. INTRODUCTION

The function of a programming language is to serve as a set of

conventions for communicating algorithms - the communication being

either between people and people or between people and machines. The

efficiency of the communication process is clearly improved as the

conventions are better understood. This is just another way of saying

that it is advantageous that the programming languages we use be accurately

defined. Conventionally, programming languages have been defined by

English language descriptions, as written in manuals. The moder-n idea

in this area is to formalize the definition, using some suitable nota

tion (1). The discovery of what sort of notation is "suitable" is really

a major unsolved research problem in this area although there have been

many excellent approaches to the problem (2,3,4,5,6,7,8,9,10,11).

Also,

"since the chief aim of programming languages is their use as
communication media with computers, it seems only natural to use
a basic set of semantic definitions closely reflecting the con̂ uter's
elementary operations. The invaluable advantage of such an
approach is that the language definition is itself a processing
system and that inçslementations of the language on actual machines
are merely adaptations to particular environmental conditions of the
language definition itself. The question of correctness of an
implementation will no longer be undecidable or controversial,
but can be directly based on the correctness of the individual
substitutions of the elementary semantic units by the elementary
machine operations." (1)

Considering the conçlexity of known conçiler systems, this proposal

to let the processor itself be the definition of the language seems to be

an unreasonable suggestion. When considering SIMBOL, because of its

www.manaraa.com

2

unique relation between the SYMBOL programming language and its execution

language string (translated object string) (12), this suggestion appears

in a different light.

The purpose of defining a formal definition of a processor may be

arranged into two categories. The description may be organized to

reflect the processor either from a user's point of view, showing

what can be done, or fro% the designer's standpoint, indicating how

the operations are performed. Since the author has two goals in mind,

the description of SYMBOL not only supplies a semantic definition of

the SYMBOL programming language but also reflects the special imple

mentation and execution of the SYMBOL machine; the present description of

SYMBOL emphasizes mostly the designer's standpoint. Because the

execution of instructions within a process causes side effects, it is

beneficial for a programmer to know exactly how the operation is

performed. In order to reflect the unique structure and concept of the

actual SYMBOL system, the abstract machine in this description is

specially defined but not in the standard mechanism used by Lucas, Lauer

and Stigleitner (9). Both the SYMBOL system and language are originally

designed (21) :

(1) That it be able to handle variable field length data and

instructions.

(2) That it be able to maintain the structure of the data internally.

(3) That it be able to use and operate on this structure.

(4) That it be able to handle symbolic addressing of the data.

(5) That it be able to interpret links in the data correctly.

www.manaraa.com

3

(6) That it be able to insert links in the data when necessary.

This implies that in order to convey these ideas to the reader

accurately, the description must reflect these special properties and

their corresponding machine architecture. To accomplish this require

ment, an abstract machine is implemented based on the architectural

component of the SYMBOL system.

The SYMBOL IIR conçuter system supports, among other things, a

complete, hardware implementation of the SYMBOL programming language.

This language is a high-level, procedual, general purpose programming

language. One characteristic of the SYMBOL programming language that

sets it off from many other high-level languages such as PL/1 and

Algol 68 is that stuctured data values may be created and manipulated

dynamically. The format of these data structures will generally not

be known prior to execution time. The incorporation of dynamic data

structures in the SYMBOL programming language places special demands

upon the conçuter system supporting the inqjlementation of that language.

Great generality is required to support this feature and this generality

must be achieved with a reasonable degree of efficiency.

This thesis focuses on the aspect of the SYMBOL IIR computer system

that implements the dynamic data structures used in the SYMBOL programming

language. This implementation is a particularly important aspect of the

SYMBOL system, is particularly difficult to describe, and places special

constraints on the describing mechanism. Thus, it is felt ençhasis in

this area would provide a good test for the approach taken here.

www.manaraa.com

4 a

Recently a formal description of a mini-conqiuter (PDP-8) has been

reported (10). It is a very different challenge to describe a much more

complicated system to its very detail than has been done on PDP-8. It

also is very difficult for the reader to follow such a detailed description.

The Vienna Method has been chosen as the defining notation (9,10,11).

It was developed by the PL/1 definition group of the IBM Laboratory in

Vienna and its use to formally define PL/1 represents one of the major

achievements in the area of language definition (13). It has also been

applied on many other languages (10).

The principle of the Vienna method is based on the definition of an

abstract machine which is characterized by a set of states and a state

transition function. The abstract machine is specified in an artificial

language based on abstract concepts of confuting. (The abstract machine

for describing SYMBOL is based on the logical structure of STMBOL). It

is defined by the set of states 2 which the machine can assume and by a

state transition function A which, for any given state, s, specifies a

successor state s'gS. The machine stops when it transfers into a subset

of state Zg, called the end states of the machine. A computation is a

sequence of states SQ, ŝ , ..., ŝ , It can be either

terminating s eS„ or nonterminating. The objects to be interpreted by
tl £i

the abstract machine are objects which possess a tree structure. A given

program (in abstract form) defined an initial state of the machine. The

subsequent behavior of the machine is said to define the interpretation

of the program.

www.manaraa.com

4b

The objects which are to be operated by the abstract machine are

defined by the abstract syntax. The abstract syntax specifies the essential

parts of the structure of the objects over which the interpreter is to

work. The abstract syntax will be defined as a set of predicates which

not only defines the form of the input objects and intermediate results

but also permit the testing of objects within instructions of the

interpreter for decision making. The abstract syntax of SYMBOL is based

on the SYMBOL programming language but with a minor modification in

order to accommodate the property of its translated object string.

Finally the interpretation of the SYMBOL programming language is

defined using the abstract machine. The interpretation supplies the

rules of executing the abstract program by the abstract machine. The

interpretation tries to follow the real execution of the SYMBOL programming

language by the SYMBOL system, but the interpretation is conceptual rather

than actual.

This thesis has three fundamental goals:

1) To demonstrate that a programming language can be defined by

using an abstract machine which closely reflects the logical structure of

the actual computer system, and that the interpretation of the definition

supplies a set of semantic rules closely reflecting the conçuter's funda

mental operations.

2) To test if the Vienna method can be used to describe a programming

language as well as its corresponding computer system efficiently.

3) To supply an unambiguous and concise conceptual description of

the SYMBOL system.

www.manaraa.com

5

II. INTRODUCTION OF THE SYMBOL SYSTEM

The SYMBOL conçu ter executes a program in two modes (14). The first

mode is a translation mode and the second mode is an execution mode.

The input program is singly a sequence of characters that expresses

a SYMBOL program (15). Whenever a job is chosen, the input program is

read in and stored in the memory.

In translation mode, the Translator (16) (TR) scans over the stored

program string and generates a corresponding post-fix character string

as well as name tables. This post-fix string is called the abject string.

The name tables are variable tables for blocks and procedures. All of

the object string and name tables are stored in the memory. If translation

is successful, the processor will enter the execution mode and execute

the object string.

The generated object string has two primary features: all variables

are separated to a hierarchy of name tables and all language conçonents

are in post-fix Polish form. The TR has isolated operands and operators

in the source string. These operands and operators now become the basic

elements of the object string for the Central Processor (CP) (17,18,19,20)

to execute in execution mode.

A. Object String

The translated object string (OS) is stored in the memory consecu

tively. There is an object string address counter (OSA) pointing to the

current executing object string element. Each element may occupy one-half.

www.manaraa.com

6

one or more than one word of space. If it occupies one-half word, a

toggle will indicate which half is the current element. The object string

elements are shown in Appendix I (14). Some of them are worth mentioning

here.

1. Blocks and procedures

The block structure of the program in the object string is represented

by a block number and a block-end pair. The statements of the block are

located between the block-end pair. The block number is assigned to the

block uniquely during the translation mode. Each block number must match

a block end code. The block number is also used to identify the name

table of this block. It can be viewed as the name of the block.

The procedure block is the same as an ordinary block, but a transfer

command is inserted immediately in front of the procedure block which

skips this procedure block in executing. When this procedure is called,

it will be reentered at the calling point. The transfer command consists

of a code of transfer and a destination address of the transfer. The

destination in this case is the next object immediately following the

procedure block.

Before a program is executed, it is defaulted into a block with

block number zero.

2. Labels

A label in the object string is simply a block number followed by

its labelled statement. This block nvmber is the block number of the

block in which the label statement is located.

www.manaraa.com

7

3. Conditional statement

After the translation, the conditional statement is transformed into

the following form:

THEN IF FALSE

expression JUMP-address 1 body 1[TRANSFER-address bodyZ]

The expression is the boolean expression. If expression is false,

it follows the THEN IF FALSE JUMP-address 1 code and jumps to address 1.

Address 1 points to the object immediately following the statement or to

body 2. If expression is true, it skips the THEN IF FALSE JUMP-address 1

command and executes body 1. After body 1 is executed, it either goes to

the next statement or the TRANSFER-address 2 will skip body 2 and goes

to the next statement. Both address 1 following THEN IF FALSE JUMP

and address 2 following TRANSFER are inserted by the translator.

4. Scope statement

This statement supplies the inter-block variable linking. This

global link is completed in translation mode. This statement is simply

ignored in the object string and in execution. In translation mode, the

Translator simply inserts a pointer in the name table entry of the linked

variable. This pointer points to this variable's entry in the name table

of the nesting block.

B. Name Table

Corresponding to each block or procedure, the TR generates a name

table and stores it in memory. This name table is also named by its

block number.

www.manaraa.com

8

In the table, each identifier of this block has two entries.

The first is the identifier's name and immediately following it is this

identifier's control word (cw). The identifier's name is the actual

code of the identifier. The control word consists of two flag fields and

two address fields. Flag fields indicate the type of the variable.

Address fields store either indirect linking addresses or data. (Please

refer to AppendixII for more details.)

The first entry of each name table is reserved for a block control

word. It also consists of two flag fields and two address fields. These

two address fields are for block linking. The first address field links

the nesting block by storing the address of the first entry of the

nesting block's name table. The second address field links nested block

by storing the address of the first entry of the nested block's name table.

C. Stack

When a block is entered, a push-down stack is created and assigned

to this block. This stack can be dynamically expanded. When a new block

is entered before the old one exited, a new stack is created and the old

one is left in the memory without touching it. When the old block is

resumed, its stack will also be resumed. When a block is exited, its

corresponding stack is deleted. The system has a (STD) stack data

register and a stack address register (STA) for manipulating the stack.

STA. points the top of the stack and STD stores the top entry of the

stack.

www.manaraa.com

9

D. Memory

The memory is organized in order to meet the dynamic length storage

requirements. The main memory is divided into 32 pages. Each page has

32 groups. Each group contains 8 words. One word is 64-bits. A page

is divided into three distinct regions. (Refer to Figure 8, p. 16 (14).)

The first region has four words called page headers. Page headers

are used to form the page list and to manage the group lists within the

page.

The second region is a set of 28 words called group link words. The

third region is group data space which consists of the 28 groups of this

page. The group data space is for data storage. Corresponding to each

group in the group data space, there is a group link word in the second

region. This group link word maintains the information for group linking

(both forward link and backward link).

A group Is the smallest unit of space allocation. Large space is

formed by linking groups or even by linking pages.

There are 16 special memory operation commands to give a full

service of this special memory organization. (Interested reader please

refer to (7,15).)

E. Page List

Page lists are formed by linking pages. Pages available for

assignment are maintained on an available page list in the system.

www.manaraa.com

10

When a user needs space, a user page list is formed by assigning

a page from the available page list to this user. A control word is

established for this user to manage this page list. When more pages are

needed, they are added on to the user's page list. When a job is

completed, its user's page list is no longer needed, this page list is

given back to the system by returning it to the system's available

page list.

F. System Headers

In the memory, for each terminal, a definite space is assigned for

the use of system headers which contains all the information for the

system management. Only those headers which are related to the execution

of programs or to the central processor will be mentioned.

AHO: It contains current block number, block flag, inner block

bit and current break point «

AHl: It contains error code, status word, etc.

AH2: It contains I/O op code, object string current address (OSA),

CP stack current address (STA)-

AH5: It contains CP stack data word (STD).

Inside of AHl, there is a limit counter (LC) which contains an

integer L in the range of 0< 99. The default value of L is 9. It

can also be set to any value within its range by an assignment statement.

This value is the upper bound on the relative precision of all dynamic

numeric operations.

www.manaraa.com

11

III. ABSTRACT SYNTAX OF SYMBOL PROGRAMMING LANGUAGE

The abstract syntax of a programming language is defined to

identify its abstract programs. Basically source programs require

cumbersome scanning and sometimes complicated procedures for gathering

the components of statements relevant for the interpretation. Because

of this, when designing an interpreter for a programming language, source

programs are usually not interpreted directly; instead a translated form

of the program is used as the input to the interpreter. This translation

process produces structures that allow ready access to the components of

statements needed for interpretation. It also eliminates source program

elements not required for the semantic interpretation. This translated

form of a programming language is defined by its abstract syntax.

The abstract syntax of SYMBOL is based on the syntax of SYMBOL

Programming Language (refer to Appendix III). Because the SYMBOL source

programs are translated by the Translator into a reverse polish string,

the structure of the conçound statement is no longer held in this object

string but is transformed into a linear form. As a consequence in the

abstract syntax, some minor modification of the confound statement has

been made. That means in the abstract syntax, confound statements are

defined in a one-level list form instead of their original Lree form.

Let the set of objects representing the set of object strings of
A

legal programs in SYMBOL be denoted by is-obj-string.

All predicates have a prefix "is-", and all selectors have a

prefix "s-" except possibly identifiers. Identifiers are also used as

www.manaraa.com

12

selectors. The predicate definitions are labelled (Al), (A2), ... for

reference purposes.

A
is-id

A
is-blk-no

A
is-bIk-end

A
is-string

A
is-comt

A
is-number

A
is-stm-add

A
is-data-record

is-teranl-no

an infinite set of identifiers.

a set of integers denoting block numbers.

{end} denotes the end of block,

an infinite set of sequence of length

zero or more of any characters,

an infinite set of comments.

an infinite set of numbers.

a set of statement address.

an infinite set of input data of

terminals.

a set of terminal numbers.

is-arith-rel

A
is-string-rel

A
is-arith-op

A
is-string-op

A
is-boolean-op

[GREATER, GREATER THAN, GTE, EQUAL,

EQUALS, NEQ, LTE, LESS, LESS THAN,

?'»>>>}•

[BEFORE, SAME, AFTER}.

{+» -»*»/}•

[JOIN, FORMAT, MASK}.

[AND, OR}.

The set of selectors necessary for the specification of the

abstract syntax of SYMBOL is infinite, because the set of identifiers is

infinite. However, the set of selectors that are not identifiers S is

finite and enumerable. We can define the set of S as follows:

www.manaraa.com

13

{̂elem(i)| } s-recip-list, s-assign-elem,

s-recip-hd, s-recip-tl, s-as, s-as-list, s-field-hd,

s-field-tl, s-as-hd, s-as-tl, s-as-struct,

s-comp-id, s-comp-list, s-exp-hd, s-exp-tl

s-proc-id, s-act-para-list, s-mon-op, s-mon-exp,

s-dya-opdl, s-dya-opd2, s-dya-op, s-exp,

s-L-par, s-R-par, s-goto-id, s-goto-destn, s-ret-id,

s-ret-exp, s-call-id, s-proc-call, s-comt-id, s-comt,

s-init-val-id, s-init-val, s-ds, s-ds-list, s-sf-hd,

s-sf-tl, s-ddp-hd, s-ddp-tl, s-data-struct,

s-id-hd, s-id-tl, s-link-list, s-link-exp,

s-sw, s-sw-id, s-sw-struct, s-ls, s-label-list,

s-llp-hd, s-llp-tl, s-label-struct, s-if-id,

s-jump-ptr, s-transf-id, s-transf-ptr, s-input-id,

8-input-terml, s-input-recip-list,

s-output-id, s-output-terml, s-output-exp-list,

s-part-ref-id, s-part-ref-idx, s-prat-ref-bound,

s-part-ref-length, s-in-id, s-in-comp]

is-obj-string = is-obj-list

is-obj-list = {<elem(i); is-obj >| l̂ i]̂ n} v is-0

where n is the length of the object string

is-obj = is-blk-no v is-proc-blk-no v is-proc-hd v

is-stm V is-blk-end v is-proc-blk-end v

is-if-exp V is-if-jump-ptr v is-transf-ptr

www.manaraa.com

14

(A4) is-proc-blk-no = is-blk-no

(A5) is-proc-blk-end = is-blk-end

(A6) is-proc-hd = is-form-para-list

(A7) is-stm = is-assign-stm v is-goto-stm v is-call-stm v

is-dtramy-stm v is-comment-stm v is-init-val-stm v

is-retn-stm v is-link-stm v is-input-stm v

is-output-stm V is-sw-stm

(A8) is-assign-stm = (<s-recip-list:is-recip-list >,

s-assign-elen:is-exp v is-assign-struct >)

(A9) is-recip-]ist = (< s-recip-hd:is-recip v is-LIMIT >,

< s-recip-tl:is-recip-list v is- Q>)

(AlO) is-exp = is-prim-exp v is-mon-com v is-dya-com v

is-paren-exp

(All) is-assign-struct = (< s-as:is-as>,<s-as-list:is-assign-as-list

V is-Q>)

(A12) is-as = is-field-list v is-Q

(A13) is-field-list = (< s-field-hd:is-exp>, <s-field-tl:is-field-list

V is-0 >)

(A14) is-assign-as-list = (<s-as-hd:is-assign-as-pair>,

< s-as-tl : is-assign-as-list v is-O >)

(A15) is-assign-as-pair = (<s-as-struct:is-assign-struct>,

< s-as: is-as>)

(A16) is-recip = is-id v is-component v is-proc-call

(A17) is-prim-exp = is-literal v is-id v is-component v

is-proc-call v is-'LIMIT' v is-part-ref v

is-ln-comp

www.manaraa.com

15

(A18) is-component = (< s-comp-id: is-id> , < s-comp-list: is-exp-list>)

(A19) is-exp-list = (C 5-exp-hd: is-hd>, < s-exp-tl: is-exp-list>)

(A20) is-proc-call = (s-proc-id: is-id> ,<s-act-para-list :

is-act-para-list >)

(A21) is-act-par-list = {<elem(i): exp >j 1 ̂ i < no. of act

parameters}

(A22) is-part-ref = (< s-part-ref-id:is-id> ,< s-part-ref-idx:

is-exp-list V is-n>><s-part-ref-bound: is-exp> ,

<s- part-ref-length: is-exĵ)

(A23) is-in-comp = (<s-in-id: is-'IN'> , < s-in-comp: is-component>)

(A24) is-mon-com = (< s-mon-op: is-mon-op> , < s-mon-exp : is-mon-exp>)

(A25) is-mon-exp = is-prim-exp v is-paren-exp

(A26) is-dya-exp = (<s-dya-opdl:is-exp>,

< s-dya-opd2:is-mon-exp> ,

< s-dya-op : is-dya-op>)

(A27) is-dya-op = is-rel-op v is-arith-op v is-string-op v is-Boolean-

op

(A28) is-rel-op = is-arith-rel v is-string-rel

(A29) is-paren-exp = (<s-L-par : is-'(' > , < s-exp : is-exp> ,

< s-R-par: is-')'>)

(A30) is-goto-stm = (< s-goto-id: is-'GO' v is- 'GO T0'>,

<s-goto-destn:is-id v is-component v is-proc-

call>)

(A31) is-ret-stm = (̂ s-ret-id:is-'RETURN'> ,

< s-ret-exp : is-exp>)

www.manaraa.com

16

(A32) is-call-stm = (<s-call-id:is-'CALL'>,

< s-proc-call:is-proc-call>)

(A33) is-dinmny-stm = is-fl v is-'CONTINUE'

(A34) is-comment-stm = (<s-comt-id: is-'NOTE'> ,

<s-comt : is-coint>)

(A35) is-init-val-stm = (*̂ s-init-val-id : is-id> ,

<s-init-val:is-string v is-data-struct>)

(A36) is-data-struct = (<s-ds : is-ds >,

<s-ds-list: is-data-ds-pair-list v is-̂ >)

(A37) is-ds = is-string-fd-list v is-Ci

(A38) Is-string-fd-list = (<s-sf-hd:is-string >,

ŝ-sf-tl:is-string-fd-list v is-0 >)

(A39) is-data-ds-pair-list = (<s-ddp-hd:is-data-ds-pair>,

<s-ddp-tl:is-data-ds-pair-list v is-Q>)

(A40) is-data-ds-pair = (<s-data-struct:ls-data-struct> ,

< s-ds: is-ds>)

(A50) is-form-Para-list = is-id-list

(A51) is-id-list = (< s-id-hd :is-id> , < s-id-tl: is-id-list>)

(A52) is-link-stm = (< s-link-list: is-recip-list> ,

< s- link- exp : is-exp>)

(A53) is-sw-stm • (<s-sw: is-'SWITCH'> ,

< s- sw- id : is- id>,

< s-sw-struct: is-label-struct>)

(A54) is-label-struct = (<s-ls: is-ls> ,

<s-label-list:is-label-ls-pair-list v is-n>)

www.manaraa.com

17

(A55) is-ls = is-id-list v is-0

(A56) is-label-ls-pair-list = (<s-llp-hd:is-label-ls-pair> ,

s-llp-tl;is-label-ls-pair-list v is-Q

>)

(A57) is-label-Is-pair = (<s-label-struct : is-label-struct>;

< s-ls =is-ls >)

(A58) is-if-exp = is-exp

(A59) is-if-jump-ptr = (<s-if-id:is-'IF FALSE JUMP'>,

< s-jump-ptr:is-stm-add>)

(A60) is-transfer-ptr = (s-transf-id : is-'TRANSFER'> ,

s-tranf-ptr : is-stm-add>)

(A61) is-input-stm = (<s-input-id;is-'INPUT; v is-'INPUT STRING'>,

s-input-tennl : is-exp > ,

< s -input-recip-list :is-recip-list>)

(A62) is-output-stm = (<s-output-id:is-'OUTPUT' v is-'OUTPUT STRING'>,

< s-output-termL:is-exp> ,

< s-output-exp-list::is-exp-list>)

(A63) is-data-record = is-data-struct v is-init-val-stm-list

(A64) is-literal = is-number v is-string.

www.manaraa.com

18

IV. THE STATES OF THE ABSTRACT MACHINE (9)

A
This section defines the set of states, is-state, which the abstract

machine can assume. The set of states is defined to reflect the structure

of SYMBOL. The initial states of the programs and the set of end states are

also included in the set of states.

Other than the set of elementary objects (EO) and Set of Selectors (S)

for the SYMBOL abstract syntax, the following sets of elementary objects

and selectors are distinguished:

A
is-n = an infinite set of integers

(used for the number of object string

elements)

A
is-a a set of integers

(used to name the position of the elements

of the space available list)

{s-flag,s-fl,s-bl3 Selectors to distinguish the components

of block-1ink-node. They are flag field

forward link field and backward link field.

{s-cw,s-inf} Selectors for the components of id-node.

They are control-word field and informa

tion field.

A
is-sta a set of integers

(used to name the position of the stack

elements)

www.manaraa.com

19

is-flag a set of codes of block control word flag bits

(See Appendix II)

A
is-ptr a set of pointers

is-ma a set of memory addresses

A
is-s a infinite set of combinations of selectors

A
is-para-no a set of integers

(used to number the parameters of procedures)

A
is-lc a set of integers <100

(used for the contents of the limit counter)

is-nf a special code which indicates the entry is empty,

(null field)

The set of the selectors for the states of abstract machine is;

{s-os, s-ntt, s-stk, s-hd, s-sal, s-dump, s-m, s-c}

(SI) is-state = (< s-os: is-os> ,

< s-ntt: is-ntt> ,

< s-stk: is-stk> ,

s-r: is-r> ,

< s-sal; is-sal> ,

•̂ s-d: is-dump> ,

s-m: is-m> ,

 ̂s-c: is-c>)

where:

OS: object string

www.manaraa.com

20

ntt: name table tree

stk: stack

r: register

sal: space available list

dump: dump

m: memory

c: control

(52) is-os = ({ <n: is-obj> I 1 is-n(n) > 3)

(53) is-ntt = ({ <b: is-blk-branch> | [is-blk-no(b)})

(84) is-blk-branch = (< s-blk-link: is-blk-link-node> ,

[<id: is-id-node> I |is-id(id)})

(55) is-blk-link-node = (<s-flag: is-flag> ,

< s-fl:is-ptr> ,

< s-bl : is-ptr>)

(56) is-id-node = (<s-cw: is-cw> ,

ŝ-inf : is-inf>)

(57) is-inf = is-data v is-blk-no v is-s* v is-inf-str

*s = ŝ -Sg . . . Sjĵ (ç) J i> 1. sĵ , Sg . . . ŝ e S

(58) is-cw = [DNT ,LS, DOS ,LABEL, PROC,

PARA, LINK, GLOBAL }

(59) is-inf-str = (<~s-blk-no: is-blk-no> , s-ob j-no : is-n>)v

(<s-pn: is-para-no> , < s-blk-no> ,

s-obj-no: is-n>)

www.manaraa.com

21

(SlO) is-data = is-number v is-string

(SU) is-stk = ({<i: is-stk-wd> I 1 is-sta(i)])

(512) ls-stk-wd= is-stk-id-node v is-blk-stk-wd

(513) is-blk-stk-wd = is-blk-no v ̂ s-cbc: is-blk-no> < s-nbc: is-blk-no>)

v(< s-osa: is-n> , < s-stp: is-sta>)

(514) is-r = (<s-osc: is-n> ,

<s-stp:is-sta> ,

s-bc: is-blk-no> ,

< s-salp: is-a> ,

< s-lc: is-lc> , < s-hd: is-hd>)

(515) is-m = ({<ma: is-m-el> 1 j is-ma(ma)})

(516) is-m-el = (<s-cw: is-m-cw> ,

<s-inf: is- m -inf > ,

<s-pred: is-ma> ,

<s-succ: is-ma>)

(517) is-sal = ({ <a:is-ma-> I 1 is-a(a)})

(518) is-dump = (['̂ b: is-st> I 1 is-blk-no(b) j)

(519) is-c = control tree (6)

(520) is-flag = [block in use, n]

(521) is-stk-id-node = (< s-cw: is-stk-cw> , < s-inf : is-inf>)

(522) is-stk-cw = is-cw v [RECIP, SUB, SUB-ADD,], @1, <»> ,DATA}

(523) is-m-cw = { LSS, EV, STRING}

(524) is-m-inf = id-data v is-s v is- Q

www.manaraa.com

22

A. Description of the Components of the State

The elements of the set of states which we have defined are correspond

ing to the object string, name table, stack, registers, page list and

memory of the SYMBOL structure.

1. Object string (OS)

The object string of a program is a list of object elements. The

object elements are defined in the abstract syntax which are elements of

A
is-obj

object string

I elem(l) lelem(2) 77. lelem(i) |elem(n)
obji obj2 obĵ obĵ

The block structure and procedure structure in the object string are

shown as follows:

OS

lelem(l) |elem(2) ëTê Ielem(i) ...lelem(k) ... lelem(l) 1e1em(n)

program obj block no. obj, end end
default I
block no. ' block

www.manaraa.com

23

os

I elem(l) |elem(i)
obĵ procedure

block no.

elem(i+l) l̂em(i+2) ...{ elem(j) 77". |elem(n)
obĵ 2̂ procedure

end
elem(l) | elem(2)... | elem(k)

procedure head
formal parameter
list

t procedure Î
2. Name table tree (ntt)

For the program which is currently being executed by the system, there

is a name table tree (ntt). In this name table tree, corresponding to

each block or procedure occurring in the program, there is a branch which

is call block branch. This block branch is identified by the block

number of its corresponding block.

Within the block branch, corresponding to each identifier (variables,

labels and procedures) occurring in this block there is an identifier

node (id-node). This identifier node is named by its identifier which

implies identifiers must be distinct from each other within a block.

Each block branch also contains a block link node (blk-link-node).

This node is used for block linking information storage. It consists of

three components: flag field (s-flag), forward link (s-fl) and backward

link (s-bl). Before the execution of the program (the initial state), the

flag field stores block usage information, the forward link links to the

block-link-node of the nesting block or the block immediately leading

www.manaraa.com

24

current block, and the backward link links to the blk-link-node of the nest

ed block or the block immediately following current block. If there does

not exist a nested block or any block following current block, the backward

link (bl) is left empty.

NAME TABLE TREE
block
branch ̂

(block no.) 21(block no.) n |

blk-link idl idg"* Ld̂ block branch block branch

flag fl bl

\
cw inf cw|inf!̂ cw (inf

\ \ .
flag ptr ptr cw inf cw inf cw inf

blk-link-nodei
' id-nodes

Each identifier node of the block branch again has two components;

a control word (cw) and an information field (inf). For different kind

of identifiers, their cw and inf are different. Before the initial state,

all control words and information fields have been inserted with

appropriate contents.

a. Data in name table This indicates the identifier is a

I id simple variable with its value stored

I cw I inf in its inf. In the initial state, the

DNT data data in the information field is

empty (Q) .

www.manaraa.com

25

b. Link to structure (LS) LS indicates this identifier of a

structure. The information field

contains a pointer which points to
id

M

Icw I inf

LS/LSF ptr the first entry of the vector in the

memory. In the initial state, no

id-node has LS or LSF control word.

The LS is inserted when a structure or

vector is assigned to the identifier.

\
\

\ (

structure

c. Data in object string (DOS) This cw indicates the identifier's

data is in the object string. Its inf
lid

I I contains a pointer which points to the

DOS ptr location of the data in the object

OS ' string. Usually this occurs in the

I I I I ' initial states. After the execution,
0 /
\ % the data in the o.s. will be stored

into this id's node in the name table

or in the memory.

d. Label This is the control word of label. The inf contains a

I pointer which points to the location

1 inf of this label in the object string. cw

LABEL ptr / Remember, in the object string, this

I
I location is the block-no of this

blk-no ' label,
/

/
y

www.manaraa.com

26

e. Procedure (PROC)

id

1 inf I cw
PROC

OS

ptr

[1

/
proc-blk-no^

This is a procedure identifier. The inf

contains a pointer which points to the

first object of this procedure in the

object string. This first object is

the pro-blk-no of this procedure.

id

I cw

PARA.

1 inf
n

id

lew inf

PARA

job j-no J blk-no
n

f. Formal parameter (PARA) This is the control word of a proce

dure's fomal parameter. In the initial

state or before the procedure is

executed, the inf is empty. After the

procedure is called, the inf contains

the information of its corresponding

actual parameter and the calling state

ment. Remember, we have defined in the

abstract syntax that the actual param

eter list of its call statement or

procedure call is in the O.S. The param

eter linking process will insert a object number (obj-no), a parameter

number (pn) and a block number (blk-no) into the inf to locate the actual

parameter in the O.S. We have to have the object number of the call

statement or procedure call in the O.S. We need to have the parameter

number to locate this specific parameter from the actual parameter list.

Also we need to have the block number of the calling statement in order

to find the appropriate environment. Different calling statements will

insert different contents into inf.

para-no blk-no

www.manaraa.com

27

g. Link This is the control word and information field of a

link identifier after this link state

ment is executed. The inf contains the
cw inf

LINK blk-no and the obj-no of the Link state-

blk-no I obj-no
ment

blk-no n

h. Global This is the control word of a global linked identifier

The inf contains the blk-no of the

cw inf linked block.

GLOBAL blk-no

3. Stack (stk)

The push-down stack is defined as a stack-word (stk-wd) list. The

first three entries are reserved for storing block stack words (blk-stk-wd).

They can be fetched and inserted randomly. The block stack words are

information for block linking. Usually, the first blk-stk-wd always

stores the current block number and nesting block number. The second

blk-stk-wd stores a block number if we are entering this block or stores

a procedure block number if we are entering this procedure block. The

third blk-stk-wd stores current object string address (OSC) and current

stack pointer (stp). These information are necessary to resume the

original environment when the block is completed.

www.manaraa.com

28

elem(l) elem(2)

stk

elem(3) elem(4) .. .1 elein(i)

stp
\

I

I cbc I nbc

bIk-no bIk-no

blk-no |osa |stp

n sta

id-node id-node

Other entries on the stack can be pushed down or popped up. These

entries are id-nodes. Each id-node contains two components, a control

word and a information field which we have discussed in the section of

name table tree.

The push-down and pop-up operation are carried out by incrementing

or decrementing the stack pointer (stp). This stack pointer is in the

Headers.

4. Registers (r)

The registers contains six components which are object string counter

(osc), stack pointer (stp), block counter (be), space available list

pointer (salp), limit counter (Ic) and headers (hd).

The object string counter always points to the current executing

object in the object string.

The stack pointer (stp) points to the top (empty) entry of the

stack.

The block counter stores current executing block number.

www.manaraa.com

29

The space available list pointer points to the top element of the

space available list.

The limit counter contains an integer bound. In the initial state,

this bound is set to 9.

The registers are for storage of block information.

For simplification, these components may be directly referred by

following selectors:

s-osc(Ç) = s-osc(s-r(§))

s-stp(§) = s-stp(s-r(§))

s-bc(§) = s-salp(s-r(§))

s-lc(§) = s-lc(s-r(§))

s-hd(§) = s-hd(s-r(5))

5. Memory (m)

Memory is a sequence of memory elements (m-el). Memory elements

can form doubly linked lists. Each element contains four parts, they are

control word (cw), information field (inf), predecessor (pred) and

successor (succ).

The memory control words are (Link to Substructure) LSS, STRING and

EV (End of Vector). LSS indicates its inf contains a pointer which points

to a substructure. STRING indicates its inf contains a string. And EV

indicates this cell is the end of a vector, its inf is Q. The pred can

link to its predecessor and succ can link to its successor in the memory.

In the initial state all nodes of all memory elements are null

(O).

www.manaraa.com

30

elem(l) ..,

m-el.

M

elam(i) ... lelem(m)

ET
cw

I inf Ipredj succ
inf ma ma

6. Space available list (sal)

Space available list is a sequence of memory addresses. In the

initial state, the whole memory is linearly in this list. Memory assign

ment is by deleting memory address from the top of the list. Collecting

free memory spaces is by adding their addresses on top of the list. The

top is pointed by the salp in the header.

sal

' elem(l) • • • • I elem(i) • • • • lelem(n)
ma. ma„

Dtgnp (d)

Dump is simply a one level storage list for storing stacks. When

we enter a nested block, the nesting block's stack is temporarily stored

in dump. Stacks stored in dump are named by their own block numbers.

dump

blk-nô I blk-nô • • • • blk-nô

stk. stk_ stk.

www.manaraa.com

31

8. Control (c)

Control is a control tree. Please refer to (6) for detailed

discussion.

B. Initial State

A
The initial state for any given program t t is-obj-string is

p,̂ (< s-c: int-os(t)> , < s-osc: 1> , < s-stp: 1> ,

< s-bc:Q> , s-salp:m> , <s-lc: 9> ,

< s-ntt: is-init-ntt •> , <s-stk:f2> ,

<s-sal: is"init-sal> , s-d :n> ,

<s-m: ({ <ma:n> | | is-ma(ma) j < s-os: is-os>)

In the intital state, the object string counter (osc) is set to 1

which points to the first object of the O.S. The stack pointer (stp)

points to the bottom of the stack. The block counter (be) is set to Q

which means no block has been encountered. This limit counter (Ic) is

default to 9. The stack (stk) is empty. The dump (d) is empty. The

memory elements are all empty. The object string (os) is a legal object

string of a program.

Since no memory space is used, all memory elements are available

for assignment. They are all in the initial space available list (init-sal),

is-init-sal = ({'̂ i:i>|| is-a(i) ,is-ma(i) i<M})

where: M is the word number of the memory.

www.manaraa.com

32

The space available pointer points the top of the list, so it is

set to M.

In the initial state the initial name table tree (init-ntt) is

prepared ready for execution. For different nodes in the name table tree,.

different entries have been inserted.

For block-link-node, the flag node is set empty, since no block has

been executed. The f1 is set to link the block branch of the leading

block (or nesting block), and the bl is set to link the block branch of

the following block (nested block) or 0.

For id-nodes, their contents are based on their identifiers. For

different identifiers of the program, their contents are shown below:

Identifier Control word

procedure identifier PROC

label LABEL

formal parameter PARA
identifier of
initial

value statement DOS
(init-val-id)

All other identifiers DNT

States § whose control part s-c(§) is

Information field

ptr: points to the first object of

the procedure body is o.s.

ptr; points to the location

of this label in the o.s.

n

pointer: points to this initial-

value statement in the o.s.

n

are end-states.

www.manaraa.com

33

V. THE INTERPRETATION OF SYMBOL PROGRAMMING LANGUAGE

The Interpretation of SYMBOL Language defined an instruction

schema int-os whose parameter is a SYMBOL program object string which

we have defined in Abstract Syntax. The execution of this instruction

int-os(t) simulates the execution of a program (t) by the SYMBOL system

in terms of the abstract machine.

For convenient and better readability, abbreviations for the

immediate components of a current state | are introduced. The left-

hand side of the following list may always be replaced by the correspond

ing right hand side.

OS s-os(l)

NTT s-ntt(D

STK s-stk(g)

R s-r (0

SAL s-sal(g)

D s-d(0

G s-c(1)

M s-m(̂

ose s-osc(1) s-osc(s-r (§))

STP s-stp(S) s-stp(s-r (Ç))

BC s-bc(§) s-bc(s-r (§))

SALP s-salp(S) s-salp(s-r (|))

LC s-lc(§) s-lc(s-r (§))

www.manaraa.com

34

If there cases for which the instruction definition is undefined,

then this is implicated by an additional final line in the definition:

T -» error

The following functions and instructions are not further

specified;

1. push-down (t) =

s-stk: LLCSTK; <STP ; t>)

s-stp; STP + 1

2. int-mon-com (t,b) Instruction which returns the result

of monadic combination t in the

environment of block b.

3. int-dva-com(t,b) Instruction which returns the result

of dyadic combination t in the environ

ment of block b.

4. print (t) Instruction which prints t.

5. output(m,t) Instruction which outputs record t

to terminal m.

The definition of instruction schema will be given Lû following

format:

(li) DEFINITION OF INSTRUCTION SCHEMA.

where: list of abbreviation local to the definition

for: range of arguments of the schema printed

réf.: references

note: additional notes.

Any of these last four items may be omitted.

www.manaraa.com

35

(11) Int-os =

is-'̂ '(Ô) n

T -* s-osc:OSC + 1

s-c: int-os

int-obi(Ô)

where: 0̂ = elem(OSC, OS)

for: is-OS(OS)

note: OSÇ+1 means increment the OSC pointing to the next object;

I indicates the end of the o.s.

(12) int-ob1(t) =

is-blk-no(t) -» int-blk(t)

is-proc-bIk-no(t) -* skip-to-end(t)

i8-proc-hd(t) -* null

is-stm(t) -> int-stm(t)

is-blk-end(t) -* int-blk-end(t)

is-proc-blk-end(t) -> int-nroc-bIk-end(t)

is-if-exp(t) -• push-dov7n(p,Q(<s-cw : 'BOOL'>,

<s -inf: e >

e:int-e%p(t,BC)

is-if-jump-ptr(t) -* int-if-itimp-ptr(t)

is-transf-ptr(t) -* int-transfer(t)

for: is-object(t)

www.manaraa.com

36

(13) Int-blk(f) =

is-EQUAL (BÇ,t) -» null;

T -* is <Q>(BC) -» enter-blk(t)

T -> enter-nested-blk(t)

where: is-EQUAL (BC,t) test if BC equals t.

(14) enter-blk(t) =

8et-bc(t)

stack-I(u,Q(<s -cbc: t> , < s-nbc:BC>))

init-blk

save-stk

note: These four instructions may be executed in parallel as:

s-bc:t

s-stk: p̂ (s-elem(l) : (tig(<s-cbc:t> , <s-nbc:BC>)))

s-stp:4

s-d: : STK>)

(15) Save-stk =

s-d: |a,(D; <M : STK>)

(16) init-blk =

s-stk : Q

s-stp : 4

(17) stack-I(t) =

s-stk;u(STK; <s-elem(l); t >)

(18) set-bc(t) =

s-bc : t

www.manaraa.com

37

(19) enter-nested-blk(t) =

enter-blk(t)

stack-IllClIQC <s-osa:OSC> , <s-stp;STP>))

stack-II(BC)

note: This instruction can be modified as

s-c:enter-blk(t)

s-stk: |J,(STK; <s-elem(2): ̂ >,

<s -elem(3) : <s-oas:OSC> , <s-stp;STP>) >)

(110) stack-II(t) =

s-stk: LL(STK; <S-elem(2) : t>)

(111) stack-Ill(t) =

s-stk: LL(STK; <S-elem(3) : t>)

(112) skip-to-end =

is-proc-blk-end(Ô) s-osc:OSC + 1

T -* s-c: skip-to-end

s-osc:OSC + 1

where : 0̂ = elem(OSC, OS)

(113) int-stm(t) =

is-assign-stm(t) -» int-assign-stmCt")

is-goto-stm(t) -» int-goto-stm(t)

is-call-stm(t) -* int-call-stm(t)

is-dtiinmy-stm(t) -« int-duinmy-stm(t)

is-coTTiment-stm(t) -» int-comment-stm(t)

is-init-val-stm(t) -» int-init-val-stm(t)

is-ret-stm(t) -» int-ret-stm(t)

www.manaraa.com

38

is-link-stm(t) -> int-link-stmft)

is-8W-stm(t) -» iat-sw-stm(t)

is-input-stm(t) -» int-input-stmÇt)

is-output-stin(t) -* int-output-stmft)

for: is-stni(t)

(114) lnt-assign-stm(t) =

is-exp(s-assign-elem(t)) -> int-exp-assign-stni(t))

is-assign-struct(s-assign-elem(t)) int-struct-assign-stm(t)

(115) int-exp-assign-stm(t) =

assign

stack-assign-exp(int-exp(s-assign-elein(t), BS))

s tack-recip-lis t(s-recip-lis t(t))

(116) s tack-recip-list(t) =

i8-<>(t) null

T -> stack-recip-list(s-tl(t))

s tack-recip(s-hd(t))

for: is-recip-list(t)

(117) stack-recip(t) =

is-'LIMIT' (t) -> push-down(LLQ(<S-CW;RECIP >.

<s-inf:LIMIT>))

is-recip(t) -> push-down (ij,Q(<s-cw:RECIP >,

<s-inf: R >)

R: int-recip (t.BC)

for: is-recip(t) v is-'LIMIT'(t)

note: LIMIT is the recipient for assigning limit counter (Ic)

www.manaraa.com

39

(118) int-recip(t.b) =

is-id(t) get-LHS-simp-add(t,b)

is-component(t) — get-sub-add(t,b)

is-proc-call(t) int-recip(int-proc-call(t,b),b)

(119) get-LHS-simp-add(t,b) =

is-LABEL(cŵ) -* error

is-pROC (cWj.) — error

is-LINK(cWj,) get-LHS- link-add (inf̂ , b)

is-DNT(cŵ) get-LHS-simp-add(tjinf̂)

is-LS(cŵ) PASS: t.b.ntt

is-PARA(cŵ) -» get-LHS-para-add(inf̂)

is-DOS(cŵ) -* get-LHS-sirop-add(t,b)

gen-OS-val(t,b)

where: cŵ = s-cw.t.b.ntt(§)

inf̂ = s-inf.t.b.ntt(Ç)

note: PASS = t.b.ntt passes a pointer which is t.b.ntt, it is

not passing the contents which is pointed by this pointer.

(120) get-LHS-link-add(t,b) =

is-prim-exp(expj.) -* 8la-LHS-prim(exp̂ .bĉ .)

is-mon-exp(exp̂) v is-dya-exp(exp̂) error

is-paren-exp(exp̂) get-LHS-link-add(s-exp(exp̂)

where: exp̂ = s-exp(s-obj-no(t).(OS))

bĉ = s-blk-no(t)

www.manaraa.com

40

(121) gla-LHS-prim(e,b) =

is-literal (e) "' error

is-id(e) -* get-LHS-simp-add(e,b)

is-component(e) get-sub-add(e.b)

is-proc-call(e) int-recip(int-proc-call(e.b),b)

is-LIMIT(e) -» PASS:LIMIT

is-part-ref (e) -» error

is-in-comp (e) error

(122) get-LHS-para-add(t) =

i8-id(ê) get-LHS-simp-add(ê , b̂)

is-component(ê) -• get-sub-add (ê ,b̂)

is-proc-call(ê) int-recip(int-proc-call(ê ,b̂).b̂)

where: ê = s-pn(t)(s-obj-no(t).OS)

bj. = s-blk-no(t)

(123) gen-OS-val(t,b) =

is-switch-stm(stm̂) -• gen-label-struct(t,b)

is-init-val-stm(stm̂) -» gen-init-val(t,b)

where: stm̂ = (s-inf(t))-OS

(124) get-sub-add(t,b) =

ga-sub

reverse-stp

stack-comp-list(s-comp-list(t))

push-downQi.Q(< s-cw; 'SUB-ADD'> ,

< s-inf: a >))

a: get-LHS-simp-add(s-comp-id(t).b)

www.manaraa.com

41

note: 'SUB-ADD' is a control word temporarily stored on stack

to indicate that its inf is the JW of a subscribed address.

(125) stack-comp-list(t) =

is-<>(t) push-down (jig (Cs-cw: , <s-inf:n>))

T — stack-comp-list(s-tl(t))

push-down(p, s-cw: 'SUB'> ,

< s-inf : s>))

s:int-exp(s-hd(t),BC)

for: is-number(s)

note: 'SUB' indicates inf contains an subscript of a component.

(126) reverse-stp =

is-' SUB-ADD* (cWĝ) -* null

T -* s-c: reverse-stp

s-stp:STP-1

where: cŵ ̂= s-cw(elem(STP,STK))

(127) ga-sub =

s-c:is-'DNT'(cŵ)

-» is-< > (infg) -» gen-struct(sub̂ ^̂ ..add̂ ,.i,)

T -» error*

is-'LS'(cWg) scan-sub(sub.̂ îadd.̂)̂

s-stp:STP+2

where: add̂ ^̂ = s-inf-elem(STP.STK)

sub̂ ĵ̂ = s-inf •eleai(STP+l,STK)

cWg = s-cw(addgtk(§))

inf g = s-inf (addgj.̂ (§))

www.manaraa.com

42

note: simply is a pointer and add̂ k̂ (?) is the content

which is pointed by addĝ ^̂ .

ref: (124) and (119)

*: error is caused by trying to alter the content when the

address is referred.

(128) gen-struct(s,a) =

s-c: scan-nullfieId-sub(s,ĉ)

enter-ntt-link(a,CF)

s-salp; SALP-1

where: ĉ = elem(SALP,; SAL) «m

ote: ĉ is only a pointer (not the content)

(129) enter-ntt-linkÇa,c) =

s-a: M.Q(<S-CW:'LS'>,<s-inf :c>)

note: a is a pointer. This is equivalent to s-ntt: iJ,(NTT;

a:M'Q(̂ s-cw: 'LS' > , < s-inf :c>))

ref: (127)

(130) scan-nullfield-sub(s.a) =

s-c:is-'l'(s) - is-']'(cŵ ĝ) - PASS:a

reverse-stp

insert-ev(ĉ)

insert-nf-succ(a,(t)

is-'SUB'(cŵ ĝ) -» s-c:gen-sub-struct(inf.a)
new

insert-ev(ĉ)

insert-nf-succ(a,ĉ)

www.manaraa.com

43

s-stp:STP+l

T -> scan-nullfield-sub(s-l,ĉ)

insert-nf-succ

s-salp:SALP-l

where: = s-cwelem(STP,ST)

inf „ = s-inf'elem(STP,ST) new —

= elem(SALP, SAL)"m

(131) gen-sub-struct(s,a) =

s-c: scan-nullfield-sub(s,ĉ)

insert-sub-link(a,ĉ)

s-salp: SALP-1

where: ĉ = elem(SALP,SAL)*m

(132) insert-sub-link(a,c) =

(̂s-a(g); s-cw:LSS> , s-inf : c>)

note; 'LSS' means link-to-substructure

(133) insert-ev(c) =

K (s-c(Ç) ; ̂ s-cw:EV> , < s-succ:Q>)

note: 'EV' indicates the end of vector

(134) insert-nf-succ(a,c) =

M- (s-a (§) ; < s-cw:STRING> , "<• s-inf :n> , s-succ: c>)

p, (s-c (g) ; < s-pred: a>)

(135) scan-sub(s,a) =

is-'̂ l̂ (s) -• is-*̂ STRING>(cw) is-<]>(cw) PASS:a
reverse-stp

T-
is- < > (infg) -* s-c: gen-sub-struct(sub̂ ,̂ a)

www.manaraa.com

44

s-stp:STP + 1

T -* error*

is-<LSS> (cWg) -» is- <]>(cŵ ĝ) -» PASS:a

reverse-stp +

T -* s-c: scan-sub (sub̂ amitxf̂)

s-stp:STP+1

is-<EV> (cWg) - is-'̂]> (cŵ ĝ) — s-c:PASS:a

reverse-stp

insert-ev(C|.)

s-salp: SALP-1

T"* s-c : gen-sub-struct(sub̂ p̂ ,a)

insert-ev(ĉ)

insert-nf-succ(a,ĉ)

s-stp:STP+1

s-saIp:SALP-1

T -* is-'*̂ EV> (cWg) -« s-c : scan-nullf ield- sub (s ,ĉ)

insert-nf-succ(a,ĉ)

s-salp:SALP-1

T -* scan-sub(s-l,sucĉ)

where: cŵ = s-cwa(§)

infg = s-inf-a(§)

sub̂ ĝ = s-inf'elem(STP,STK)

cŵ ew ~ s-cw•elem(STP,STK)

Cj. = elemÇSALP, SAL) -m

succg = (s-succ'ad))

www.manaraa.com

45

note: *ref:(127)

Ĝarbage collect routine will collect the deleted

structure if a new assignment happens.

(136) Int-exp(t,b) =

is-prim-exp(t) -* int-prim-exp(t,b)

is-mon-com(t) PASS:M>«(< s-cw:STRING> , < s-inf : int-mon-com
Ct,b)>)

is-dya-com(t) -* PASS s-cw:STRING> , "Cs-inf: int-dya-com
(t,b)>)

is-paren-exp(t)-» int- exp (s - exp (t) ,b)

(1-37) int-prim-exp(t,b) =

is-literal (t) — PASS iM'Q s-cw:STRING> , s-inf : t>)

is-id(t) -» get-RHS-simp-add(t,b)

is-component(t) -* pass: a(§)

a: get-sub-add(t,b)

is-proc-call(t) -* int-exp(int-proc-call(t,BC).b)

is-<LIMIT> (t) -> PASS:P'o(<s-cw;LIMIT> ,<s-inf:IX>)

is-part-ref (t) int-part-ref(t,b)

is-in-comp(t) int-in-comp (t,b)

(1-38) get-RHS-simp-add(t,b) =

is-<LINK> (cŵ) - get-RHS-link-add(inf̂ .,b)

is-< DOS> (cWj.) get-RHS-simp-add(t,b)

gen-os-val(t,b)

is-< GLOBAL> (cWj.) — get-RHS-simp-add (t,inf̂)

is- < PARA> (cWj.) -» get-RHS-os-add (inf̂)

T PASS: nt_

www.manaraa.com

46

where: nt̂ = t«b*ntt(|)

cŵ = s-cw(ntj.)

note: T condition is obtained if cŵ is LABEL, PROC, LS, and DNT.

(1-39) get-RHS-link-add(t,b) = int-exp(exp̂ ,b̂)

where: exp̂ = s-exp*((s-obj-no(t))-OS)

b̂ = s-blk-no(t)

ref : p. 27 Link.

(140) get-RHS-os-add(t) = int-exp(ê ,b̂)

where: ê = (S-pn(t))•((s-obj-no(t)) (OS))

bj. = s-blk-no(t)

ref: p. 26 formal parameter

(141) stack-assign-exp(t) =

is-< STRING V LIMIT v DNT> (cw^)

-* push-downQjiq(< s-cw: DATA> , < s-inf : inf̂ >))

is-<LS V LSS> (cŵ) -* stack-struct (t)

T error

where: cŵ . = s-cw(t)

(142) stack-struct(t)

s-c:fetch-struct(inf̂ ,ĉ)

push-downCUgC" s-cw: s-inf :Q>))

start-level-ptr(ĉ)

s-saIp;SALP-1

where: Cj. = elem(SALP< SAL) *m

inf̂ " s-inf*t(|)

www.manaraa.com

47

(143) start-level-ptr(t) =

s-t: M-q(*̂ s-cw:INIT> , < s-pred:n>)

note: insert 'INIT' into the level pointer.

(144) fetch-struct(t,s)

is-<EV>(cŵ) int-ev-source (s)

is-<LSS> (cWj.) -> int-link-source(t,s)

T "* fetch-struct(sucĉ ,s)

pushdown (M'Q(< S-CW:DATA> ,

< s-inf: inf̂ >))

where: cŵ = s-cwt(Ç)

inf̂ = s-inf't(I)

sucĉ = s-succ-t(Ç)

note: t(§) is a pointer which links to an enLry in the memory.

(145) int-link-source(t,s) =

s-c: fetch-struct(inf̂ ,ĉ)

pushdown(iJ;Q(< s-cw: < > , < s-inf :n>))

insert-level-ptr(sucĉ ,s,ĉ)

s-salp: SALP-1

where: inf̂ = s-inf*t(Ç)

ĉ = elem(SALP, SAL)*m

SUCCt = s-succ-t(§)

(146) insert-level-ptr(t,s,c) =

s-m: M. (M;s: (< s-succ:c>) ,

c: (< s-cw:DATA> , s-inf : t >, < s-pred : s>

< s-succ:n>))

www.manaraa.com

48

(147) int-ev-source(t,s) =

is-<INIT> (cWg) -» delete (s)

pushdown(M-Q(< s-cw:(̂ > ,

< s-lnf :Q>))

T -* f etch-struct (inf predg)

pushdown(n̂ s-cw: > >,

< s-inf :f2>))

where: inf̂ = s-inf-s(5)

predg = s-pred"s(g)

CWg = S-CW"S(F)

(148) delete(s) =

is- < > (s) null

T s-c: delete (succ_)

s-sal:u,fSAL;elem(SALP + 1) : s }

s-SALP: SALP + 1

where: succg = s-succ-S(§)

(149) delete-sub-struct(t) =

is-<LSS> (cŵ) -* delete-sub-struct(sucĉ)

delete-sub-struct(inf̂)

is-<DATA> (cŵ) delete-sub-struct (sucĉ)

delete(t)

is-<EV> (cWj.) -» delete (t)

where: cŵ = s*cw-t(|); inf̂ = s-inf-t(§):

sucĉ = S-SUCC't(̂)

www.manaraa.com

49

(150) assign =

find-as-recip

scan-as-el

(151) scan-as-el =

is-< (̂ > (cW{.) -» back-up-stp

is-<LINK EXP V DATA > (cŵ) _ s-stp: STP-1

where: cŵ = s-cwelem(STP-l,STK)

(152) back-up-stp =

is- < (̂ > (cWg) -» s-stp : STP-1

T -» s-c : back-up- stp

s-stp:STP-1

where: cŵ = s-cwelem(STP-l ,STK)

(153) find-as-recip =

is-<RECIP> (cWj.) -» assign

null-recip(STP-1

assign-recip(inf̂)

is-< > (cŵ) s-c: find-as-recip

s-stp: STP-1

T null

where : cŵ = s-cwelem(STP-l) , STK)

inf̂ = s-inf-elem(STP-1,STK)

(154) null-recip(t)

s-STK: M, (STK; t : <s-cw: Q> , < s-inf ;Q>)

(155) assign-recip(t) =

is-<LS V LSS> (cwj.) — assign-field(t)

www.manaraa.com

50

look-as

delete-sub-struct (inf̂ .)

is- < DNT> (cŵ) -* as s i gn- int- fie Id (t)

look-as

is-<DATA> (cŵ)-» assigii-in-field(t)

look-as

where: cŵ = s-cw-t(§)

inf̂ = s-inf-t(§)

(156) look-as =

is- < > (cŵ) -» s-c; look-as

s-stp:STP+l

T -» null

where: cŵ = s-cwelem(STP"STK)

(157) assign-m-field(t)

is-< (<) > (cWg) -* assign-struct(t)

is-<DATA> (cWg)-» assign-simp-var (t)

is-clink EXP> (cWg) assign-link(t)

where: cŵ = s-cw»elem(STP,ST)

ref: (1115)

(158) assign-simp-var(t)

s-m: [J-(M; t: (<s-cw: DATA> , < s-inf : infg> ,

< s-pred:n> , < s-succ:Q>))

where: inf̂ = s-inf•elem(STP,STK)

(159) assign-nt-field(t) =

is-< (cWg) — assign-nt-struct (t)

www.manaraa.com

51a

is-<DATA> (cWg) -> assign-nt-simp-varCt)

is-< LINK EXP> (cWg) assign-link(t)

where: cŵ = s-cweleiit(STP°STK)

(160) assi gr-nt-simp-var(t) =

s-ntt: (J-(NTT; t :(<s-cw: DNT> , < s-inf :infg>))

where: inf^ = s-inf•elem(STP,STK)

(161) assign-struct(t) =

s-c: creat-struct (c-; ,Co)

est-link(t,C2)

s-m: M-(M;c2: < s-pred:12>)

where: = elein(SALP, SAL) -m

Cg = elem(SALP-l,SAL)"m

(162) est-link(t,c) =

s-m: li (M; t: (< s-cw:LSS> , < s-inf : c>) ,

c: (< s-cw:Q> , < s-inf :0> , < s-pred:n> ,

< s-succ:n>))

s-salp: SALP-1

(163) assign-nt-struct(t) =

s-c: creat-struct (cĵ ,c2)

est-nt-link(t ,Cĵ)

s-m: n (N; C2: < s-pred:n>)

where: ĉ = elem(SALP, SAL)-m

C2 = elem(SALP-l,SAL)-m

www.manaraa.com

51 b

(164) est-nt-link(t,c) =

s-ntt;p.(NTT; t: (<s-cw:LS> , <s-inf:c>))

s-in:p,(M;c: (<s-cw:n> , < s-inf : n> ,

<s-pred:n> , <s-succ:Q>))

s-salp:SALP-1

(165) creat-struct(a,s) =

s-c: is-< (§?> (cWg) -> creat-struct(a,s)

is- < <>(cWg) -« LG-struct(a,s)

is-< >>(cŵ) -» RG-struct(a.s)

is-<@>(cWg) -> RS6-struct(a,s)

is-<DATA> (cWg) -»string-struct(a,s,P.)

s-stp:STP4-l

s-salp:SALP-l

where: cŵ = s-cw- elem(STP,STK)

Pg = elem(STP.STK)

(166) LG-struct(a,s) =

s-c:creat-struccCĉ ,ĉ)

sst-level-ptr(s,ĉ ,ĉ)

est-linkCa,ĉ)

when ĉ = elem(SALP, SAL)-m

Cg = elem(SALP-1,SAL)'m

ĉ = elem(SALP-2,SAL)-m

www.manaraa.com

52

(167) set-suce(a,c)

s-m:p (M;a: < s-succ:c> ,

c: (< s-cw:q> , < s-inf :n> , < s-pred: a> ,

< s-succ:n>))

s-salp:SALP-1

(1-68) set-level-ptr(s,b,c)

s-m.-n, (M;s : (< s-cw:Q> , < s-inf :b> , <- s-succ: c>) ,

c : <• s-pred: s>)

s-salp:SALP-1

(169) RG-struct(a,s) =

creat-struct(aj, ŝ)

blank(s ,sa)

set-ev(a)

where:Sg = s-pred-s(Ç)

a_ = s-inf"S a a

(1-70) set-ev(a) =

s-m:|j, (M;a: < s-cw:EV>)

(171) blank(s,p)

s-m: 1j.(M; P: < s-succ:n>)

s-c: delete(s)

(172) RSG-struct(a,s) =

delete(s)

set-ev(a)

(173) string-struct(a,s,p)

creat-struct(c,s)

www.manaraa.com

53

set-string(a,c,p)

where:c = elem(SALP, SAL)*m

(174) set-string(a,c,p) =

s-m;|i. (M; a: (< s-cw: cWp> , < s-inf : infp> , < s-succ:c>) ,

c: (< s-cw:n> , < s-inf :n> , < s-pred: a> ,

< s-succ:r2>))

s-salp:SALP-1

where: cŵ = s-cw-p

infp = s-inf"P

(175) int-struct-assign-stm(t) =

assign

stack-assign-struct(s-assign-struct(t))

stack-recip-list(s-recip-list(t))

(176) stack-assign-struct(t) =

pushdown(û (< s-cw:(̂ > , < s-inf: n>))

stack-assign-as-list(s-as-list(t))

stack-as(s-as(t))

pushdown(UQ(< S-CW: (§)> , < s-inf :Q>))

(177) stack-as(t) =

is-< > (t) _* null

T -, stack-field-list (t)

(178) stack-field-list(t) =

is- < >(t) null

T -» stack-f ield-list(s-field-tl (t))

www.manaraa.com

54

stack-assign-exp(int-exp(s-field-hd(t),BC))

(179) stack-assign-as-list(t) =

is-< >(t) -» null

T -> stack-as sign-as-list (s-as-tl (t))

stack-assign-as-pair(s-as-hd(t))

(180) stack-assign-as-pair (t) =

stack-as(s-as (t))

stack-3s-struct(s-as-struct(t))

(181) stack-as-struct(t) =

pushdown(UQ(< s-cw: > > , < s-inf :n>))

stack-assign-as-list(s-as-Iist(t))

stack-as(s-as(t))

pushdown(u,Q(< s-cw: <> , < s-inf :n>))

(182) int-proc-call (t.,b) = check-proc-ret (int-procedure (t,b))

(183) check-proc-ret(t) =

is- < > (t) error

T - null

(184) int-procedure (t,b) =

enter-proc-blk(P)

link-para-list(P,1)

check-recurs ion(P)

stack-act-para-list(t)

P:check-proc-id(get-RHS-siinp-add(s-id(t) ,b))

www.manaraa.com

55

(185) check-proc-id(t) =

is-<I'ROC > (cŵ) PASS: inf̂

T -» error

where: cŵ = s-cwt(§)

inf̂ = s-inf°t(§)

(186) stack-act-para-list(t) =

stack-act-para(t,n)

n: count-act-para(s-act-para-list(t))

(187) count-act-para(t) =

is-< > elem(l,t) -* error

T -» count-para (l,t)

note: no nonparameter procedure call is allowed

(188) count-para(n,t) =

is-< > elem(iH-l,t) -* PASS: n

T count-para(n4-l,t)

(189) stack-act-para(t,n) =

is-<l>(n) -» pushdown (H ̂ (< s- cw : ACT PARA> ,

< s-inf :M'(*̂ s-ob j-no: t> ,

< s-pn: n> , < s-blk-no: BC>)))

T -» stack-act-para (t,n-l)

pushdown(û (< s-cw: ACT PARA> ,

< s-inf :ij,Q(< s-obj-no: t> ,

< s-pn:n> ,

< s-blk-no: BO)))

www.manaraa.com

56

(190) check-recursionÇt) =

is-<BIU> (flaĝ) -• recursion

T s-flagj.(Ç): BlU

where: proc-body-address = t

proc-blk-no = elem(t,0S) =bĉ

proc-nt = s-bCj.'ntt(ç) = ntj.

flaĝ = s-flag-s-blk-link'nt̂

note: recursion will call software to step in

BIU means block in use

(191) link-para-list(t,n) =

is-<PARA> (cwg) -, is- < ACT-PARA > (cŵ) -• s-c: link-para-list (t,nfl)

s-stp:STP-l

s-ntt:|i, (NTT;Pf :< s -inf :

infs>)

T -• error

is- < > (cŵ) is-< ACT-PARA> (cŵ) error

T null

where: add = fos body address

bĉ = add(§) = elem(t,0S) proc-blk-no

nt̂ = bĉ 'NTT procedure's name table

head̂ = elem(t+l, OS) procedure head

paraJ = elem(i, head̂) . ith formal parameter

= parâ -ntj.

CW£ = S-CW'Pg

www.manaraa.com

57

cWg = s-cwelein(STF-l,STK)

infg = s-inf•elem(STP-l,STK)

(192) enter-proc-blk(p) =

s-c: enter-nested-blk(bcp)

stack-Ill cose,STP)

stack-II(bcp)

s-osc: P+l

where: bCp = p-OS

(193) int-blk-end =

is- < > (bĉ) -» STOP

T s-bc: bĉ

s-stk:bĉ (D)

s-stp:s-stp*elem(3,bĉ (D))

where: bĉ elem(I,STK)

note: stop means complete execution

(194) int-proc-end =

back

int-blk-end

clear-flag

(195) clear-flag =

s-ntt:p, (NTT;f:Q)

where: f = s-flag•s-blk-link.BC•ntt

(196) back =

s-osc:s-osa(elem(3,STK))

www.manaraa.com

58

(197) Int-ret-stm(t) =

is-< > (exp̂) PASS:n

int-proc-end

T PASS : e

int-proc-end

e: int-exp (exp̂ ., BC)

where: exp̂ = s-ret-exp(t)

(198) int-goto-stm(t) =

match-block(1)

1: int-label(int-prim-exp(s-goto-destn(t),BC))

(199) int-label (t) =

is-<LABEL>(cŵ) -PASS: inf̂

T — error

where: cŵ = s-cw.t(§) inf̂ = s-inf*t(Ç)

(1100) match-block(l) =

is-(̂ = bĉ) — s-OSC: 1

T - is- < > (BÇ) - STOP

T — match-block (1)

int-b Ik-end

clear-flag

where: bĉ = elem(l,OS) ; is-(BC = bĉ) = is-EQUAL(̂ ,bC]̂)

(1101) int-call-stm(t) = int-proc-call(s-proc-call(t))

(1102) int-dumiity-stm(t) = null

(1103) Int-comment-stm(t) = print(t)

www.manaraa.com

59

(1104) gen-inlt-val(t,b) =

is-string(val̂) gen-init-string(t,b)

is-data-struct(val̂) -» gen-init-data-struct(t,b)

where: val̂ = s-init-val(elem(s-inf(t),0S))

(1105) int-init-val-stin(t) =

s-ntt:̂ (NTT; î : < s-cw:DOS> , < s-inf :OSC>)

where; î = s-init-val-id(t)-BC-ntt

(1106) gen-ini t-string(t,b)

s-ntt: |i.(NTT; id̂ : (< s-cw: DNT> ,< s-inf : ŝ >))

where: id̂ = t-b'ntt

stringy = s-init-val (elem(inf J.,OS))

inf̂ = s-inf(t)

(1107) gen-init-data-struct(t,b) =

assign-nt-struct(P̂)

back-up-stp

stack-data-struct(struct̂)

where : inf̂ = s-inf(t) struct̂ = s-init-val(elem(inf̂ ,OS))

= t*b«ntt

(1108) stack-data-struct(t) =

push-down(uQ(< s-cw: s-inf :G>))

stack-data-ds-pair-list(s-ds-list (t))

stack-ds(s-ds(t))

pushdown(p,̂ (< s-cw: @> ,<s-inf:n>))

(1109) stack-ds(t) =

is- <> (t) — null

www.manaraa.com

60

T -* stack-string- f d- list (t)

(1110) stack-string-fd-list(t) =

is-<> (t) -* null

T -> stack-string-fd-list (s-sf-tl (t))

pushdownÔJ.Q(< S-CW;DATA> ,

< s-inf; s-sf-hd (t) >))

(1111) stack-data-ds-pair-list(t) =

is-<> (t) -• null

T stack-data-ds-pair-list(s-ddp-tl(t))

stack-data-ds-pair(s-ddp- hd(t))

(1112) stack-data-ds-pair(t) =

stack-ds(s-ds(t))

stack-da-struct(s-data-struct(t))

(1113) stack-da-struct (t) =

pushdown(UQ(< S-CW: » , < s-inf :N>))

stack-data-ds-pair-list(s-ds-list (t))

stack-ds(s-ds(t))

pushdown(W-gÇ̂ s-cw: 5c>,<s-inf:Q>))

(1114) int-link-stm(t) =

assign

pushdown (u Q (< s- cw: LINK-EXP> ,

<s-inf: (<s-blk-no:̂ > , < s-obj-no:OSO) >))

stack-recip-list(s-recip-list(t))

(1115) assign-link(t) =

s-ntt:u (NTT; t : (< s-cw:LINK> ,< s-inf ; inf̂ >))

www.manaraa.com

61

where: inf̂ = s-inf(elem(STP,STK))

ref; (157), (159)

(1116) int-sw-stm(t) =

s-ntt.-LL (NTT; î :M'Q(< s-cw:DOS> ,< s-inf :OSC>))

where: î = s-sw-id(t)«ntt

(1117) gen-label-struct(t,b) =

assign-nt-struct(n̂)

back-up-stp

stack- label- struct (struct̂ . ,b)

where: struct̂ = s-sw-struct (elein(inf̂ ,OS))

inf̂ = s-inf(t)

n̂ = t'b-ntt

(1118) stack-label-struct(t,b) =

pushdown(u,̂ (< s-cw:(>v > ,<s-inf:Q>))

stack-label-Is-pair-list(s-label-list(t),b)

stack-Is(s-ls(t),b)

pushdown(lLQ (< s-cw; (g) > , <s-inf :(]>))

(1119) stack-Is(t,b) =

is-< > (t) -, null

T -» stack-id-list(t ,b)

(1120) s tack-id-list(t,b) =

is- < > (t) null

T -> stack-id-list (s-id-tl(t))

pushdown(î)

where: î = (s-hd(t))"b'NTT

www.manaraa.com

62

for: is-label(s-hd(t))

(1121) stack-label-Is-pair-list (t,b') =

is- < > (t) -* null

T -» stack-label-ls-pair-list (s-llp-tKt) .b)

stack-label- Is-pair (s- llp-hd (tO ,b')

(1122) stack-label-Is-pair(t,b) =

stack-ls(s-ls(t),b)

stack-la-struct(s-label-struct(t),b)

(1123) stack-la-struct(t,b) =

pushdown(u,Q(< s-cw: > > , <s-inf:Q>))

stack-label-Is-pair-list(s-label-list(t),b)

stack-Is(s-ls(t),b)

pushdown (p, Q (< s-cw: <> , < s-inf :n>))

(1124) int-if-jump-ptr(t) =

s-c: .iump(ŝ . t)

te£t(ŝ)

s-stp: STF-1

where: = alem(STP-l.STK)

(1125) test(t) =

is-<0 V 1> (inf̂) -» null

T -» error

where: inf̂ = s-inf(t)

note: 0 is false, 1 is true.

www.manaraa.com

63

(1126) iump(l,t) =

is- < 1 > (infg) -* null

T -» s-OSC:â

where: inf = s-inf(e)
e

= s-jump-prt(t)

note: s-OSC:â set the object string counter to the object which

will be executed next. We can assume the incrementing of

OSC is over-ride.

(1127) int-trans fer(t) =

s-OSC: â

where: â = s-transf-ptr(t)

(1128) int-input-stm(t) =

is-cINPUT STRING> (id̂) - int-input-string-list(t)

is-<INPUT> (id̂) int-input-list(t)

where: id̂ = s-imput-id(t)

(1129) int-input-list(t) =

is-<> (list̂) null

T -* int-input-list (s-recip-tl(listj.) ,m)

int-input (s-recip-hd (list̂) ,m)

m: int-exp(s-input-term((t))

where: list̂ = s-recip-list (t)

for: is-terml(m)

(1130) int-input(t.m) =

assign

stack-input(m)

www.manaraa.com

stack-recip(t)

(1131) stack-input (m)

is-data-struct (tjjj) -> stack-data-struct (t)
m

T -* pushdown (M-q Cs-cw:DATA> ,

<s-lnf:t̂ >))

where; t̂ is the input record supplied from terminal m.

(1132) int-input-string-list(t) =

is-<> (list̂) null

T -* int-input-string-list(s-recip-tl(list̂ .) ,m)

int-input-string(s-recip-hd(list»),m)

m: int-exp(s-input-terml (t))

where: list̂ = s-recip-list(t)

for: is-input-terml (m)

(1133) int-input-string(t ,m) =

assign

stack-input-string(m)

stack-recip(t)

(1134) stack-input-string(m) =

pushdown(UQ(< S-CW: DATA> , < s-inf : t̂ >))

where: t̂ is the input record stored in the input buffer of

terminal m.

(1135) int-output-stm(t) =

output (m,t)

m;int-exp(s-out-terml(t),BC)

stack-output-list(s-output-exp-list(t))

www.manaraa.com

65

(1136) stack-output-list(t) =

is- < > (t) null

T -* stack-output-list(s-exp-tl(t))

stack-assign-exp(e)

e:int-exp(s-exp-hd(t),BC)

(1137) int-in-comp(t.b) =

in-test(ĉ)

c: get-sub-add(s-in-compCt),b)

where: ĉ = c(|)

(1138) in-test(c)

is-<> (c) — PASS: 0

T -PASS: 1

(1139) int-part-ref(t,b) =

is-<> (idx̂) -» int-simp-part-ref (t,b)

T -» int-comp-part-ref(t,b)

where: idx̂ = s-part-ref-idx(t)

(1140) int-simp-part-ref(t,b) =

pass-part-ref(p,d,l)

1: int-exp(s-part-ref-length(t).b)

d: int-exp(s-part-ref-bound(t).b)

p: get-RHS-simp-add(S-part-ref-id(t),b)

(1141) int-comp-part-ref(t,b) =

pass-part-ref (p̂ .,d,l)

1: int-exp(s-part-ref-length(t) .b")

d: int-expCs-part-ref-bound(t) .b)

www.manaraa.com

66

p: get-sub-add(s-part-ref-ldft") s-part-ref-ldxCt) ,b)

where: Pj. = p(g)

(1142) pass-part-ref(p,d,1) =

PASS: RP

where : r̂ is the string taken out of p which starts from d̂ h

character and contains 1 characters.

www.manaraa.com

57

VI. CONCLUSION

One of the objectives of this description is to provide a conceptual

description of the SYMBOL IIR conq)uter system, especially focusing on

its Central Processor (CP). In this description, all the execution of the

system which is handled by the CP is faithfully implemented in the inter

pretation. Execution which is handled by other processors is purposely

simplified.

It should be noted that certain differences exist between the SYMBOL

system described here and the SYMBOL system as it actually exists. These

differences need defending. The fundamental difference between the real

computer and the conceptual description is that the latter is defined

without concern for the word size in the computer. In the description,

each node of a tree represents one logical entry without regarding for its

size. The reasons for this assumption are:

(1) The concept of the abstract syntax is based on the existance

of another translator which takes care of the parsing, scanning, segmenting

and eliminating of unnecessary elements. Only the relevent program struc

ture is concerned with the abstract syntax.

(2) In the SYMBOL system, memroy management is automatically handled

by the memory Controller and are transparent to the actions of the CP.

The fundamental structure of the memory, i.e., the ability to form a

doubly linked list, has, however, been preserved in the description.

In order to clarify the ideas, in the abstract machine, stack, name

table tree and object string were defined seperate from the memroy.

www.manaraa.com

68

But because of this arrangement, an additional dunq> had to be defined

and some extra pointers had to be added.

In the SYMBOL system, when a new block is entered before the old

block is exited, the old block's stack is simply left untouched in the

memory. In the abstract machine, the stack is defined independently

of the memory and only one stack exists. In the interpretation, when a

new block is entered before the old block is exited, it has to provide

a temporary storage for storing the old block's stack. Consequently

a dump is Implemented. This gives a clearer picture of the relation

between a block and its stack.

A detailed description could have been done. The Reference Processor

of the Central Processor has been actually defined elsewhere. Because

of the complication of such adescription,an unfamiliar reader finds it

very hard to understand and to follow. Except for documentation, it is

not practical as an introduction for the system.

This description was made after the SYMBOL system was already

completed. If we apply a similar mechanism, we can also define a formal

description of a new system, which will formalize and improve the design

procedure of computing systems. For this purpose, newer languages and

more efficient techniques have to be developed not only for description

of programming language semantics but also for defining computing

systems.

When the work started in late 1971, no one had tried to use

the VDL to describe a processor. Later in the summer of 1972, a

description of a mini-computer PDP-8 was reported (10), but no attempt

www.manaraa.com

69

of describing a computer as complicated as SYMBOL was published.

The second objective was to test the applicability of the Vienna

Definition Language (VDL) for describing conçlex computer systems. The

result is positive. The Vienna Definition Language shows its strength in

its powerful tools for the selection of tree components, the construction of

new trees from their components and assignment of new values to vertices

of trees. It is particularly suitable to describe SYMBOL. But because

of the abstract machine is defined in such a way, sometimes composite

selectors are too complicated to follow. This weakness is due to

the definition of the abstract machine not to the VDL.

This paper demonstrates the availability of VDL for real applica

tions. It also demonstrates the versatility of VDL for describing a

processor in different levels. In order to let the reader gain more

insight and philosophy of the designing of SYMBOL system, it is necessary

to supply a document of the SYMBOL system which ençhasizes the concept

and logic structure but in a simplified and concise form. It is hoped

that this paper has acconçlished that object.

Some additional work might have been done concerning the translation

between the actual source program and its corresponding abstract syntax,

it can be done easily. The description of the syntax parsing and

translation can be simply transformed from their corresponding hardware

circuits in the Translator. A detailed description of SYMBOL might be

continued as which has been done on the RP. This detailed description

can be treated as a standard document of SYMBOL. Also, the VDL can be

www.manaraa.com

70

applied in implementing the Translator of translating other programming

languages into SYMBOL object string.

www.manaraa.com

3

4

5

6

7

8

9

10,

11,

12

13.

71

VII. BIBLIOGRAPHY

McCarthy, J. "Towards A Mathematical Science of Computation."
Proc. IFIP Congress, 1962. Amsterdam: North Holland Publ. Co.,
1963.

Naur, Peter, Editor, "Revised report on the algorithmic language
ALGOL 60." Comm. ACM, 6, No. 1 (January, 1963), 1-17.

Landin, P. J. "A formal description of Algol 60." Proc. IFIP
working conference on Formal Language Description Languages.
Amsterdam, North Holland Publ. Co., 1966.

Landin, P. "A correspondence between ALGOL 60 and church's Lambda-
Notation." Comm. ACM, 8, No. 2, (Feb., 1965) 89-101.

Bohm, C. "The CUCH as a formal and descriptive language." IFIP
Working Conf., Baden, Sept. 1964.

Church, A. "The calculi of lambda-conversion." Am. Math. Studies,
6, 1941.

Wirth, Niklaus and Helmut Weber. "EULER: A Generation of ALGOL,
and its Formal Definition." Comm. ACM, 9, No. 1, (Jan., 1966)
13-23.

Neuhold, E. J. "The formal description of programming languages.
IBM SYST J. 10, No. 2 (1971), 86-112.

Lucas, P., P. Lauer and H. Stigleitner. "Method and notation for
the formal definition of programming languages." IBM Laboratory
Vienna, Technical Report TR 25.087, June 28, 1968.

Lee, John A. N. Computer Semantics. New York: Van Nostrand
Reinhold Company, 1972.

Wegner, Peter. "The Vienna Definition Language." Comp. Surveys, 4,
No. 1 (1972), 5-63.

Chesley, Gilman D. and William R. Smith. "The Hardware-Impremented
High-Level Machine Language for SYMBOL." Proceedings SJCC, 1971.

Lucas, P. and K. Walk. "On the Formal Description of PL/1." Annual
Review in Automatic Programming, 6, No. 3, (1969), 105-181.

www.manaraa.com

72

14. Smith, William R., Rice, R., Chesley, G., Laliotis, T., Lundstrom,
S., Calhoun, M., Gerould, L., Cook, T. "SYMBOL; A large experi
mental system exploring major hardware replacement of software."
Proc. of AFIPS 1971 SJCC Vol. 38.

15. Richards, Hamilton, Jr. "SYMBOL Programming Reference Manual."
Cyclone Computer Laboratory, Iowa State University, Ames, Iowa,
1971.

16. "TRANSLATOR logic description, EM0062." Cyclone Computer Laboratory,
Iowa State University, Ames, Iowa, _ca. 1969.

17. "Instruction Sequencer Logic Description EM0063." Unpublished
Internal Report. Cyclone Computer Laboratory, Iowa State University,
Ames, Iowa, ca_. 1969.

18. "Reference Processor, EM0067." Unpublished Internal Report, Cyclone
Computer Laboratory, Iowa State University, Ames, Iowa, _ca, 1969.

19. "IS Flow Chart." Unpublished Internal Report, Cyclone Computer
Laboratory, Iowa State University, Ames, Iowa, jca. 1969.

20. "RP Flow Chart." Unpublished Internal Report, Cyclone Computer
Laboratory, Iowa State University, Ames, Iowa, _ca, 1969.

21. Mullery, A. P., R. F. Schauer, and R. Rice. "ADAM - a problem-
oriented SYMBOL processor." IBM Research Paper RC-840. IBM
Thomas J. Watson Research Center, Yorktown Heights, New York,
December 20, 1962.

www.manaraa.com

73

VIII, ACKNOWLEDGEMENTS

The author wishes to express his thanks to Dr. A. V, Pohm

for his encouragement and continuous support and to Dr. C, T, Wright

who read this paper since its early stages and made many constructive

comments and guidance.

The author also expresses his appreciation to Dr. R. J. Zingg,

Dr. R. M. Stewart, H. Richards, Jr. and R. Luckeroth for their

comments and suggestions.

This work was supported by the SYMBOL project at Iowa State

University.

www.manaraa.com

74

APPENDIX I

www.manaraa.com

SYMBOL IIR INTERNAL CODE SET

8 9 A B C D E F

0
INPUT BLOCK TO FR(M ADDRESS

TO NT
ENTRY

LINK TO
SIMPLE
VARIABLE

NUMERIC
+ +

1 OUTPUT LOOP DATA BY AG LINK TO
STRUCTURE

NUMERIC
+ -

2 DISABLE ON THRU XG NUMERIC
- +

3 ENABLE PROCEDURE STRING FOR FT LINK TO
LABEL

NUMERIC

4
GOBAL IF EX WHILE FF DIRECT

PARAMETER
LINK TO
DATA IN
NT

NUMERIC
TRUE
ZERO

5
SWITCH GO EM

EMpiri-
cal

THEN
IF FALSE

FR COMPLEX
PARAMETER

STRING
START

6
NOTE PAUSE CALL

CONTINUE
THAN

ELSE FL RETURN
JUMP

LINK TO
TEMPORARY
DATA

STRING
END

7 RETURN SYSTEM TRAP END FD TRANSFER END
VECTOR

8
BEFORE LIMITED FALSE IN SA PARAMETER

RETURN
LINK TO
STRUCTURE
FIELD

www.manaraa.com

SYMBOL IIR INTERNAL CODE SET

8 9 A B C D E F

9 SAME ABS
Absolute

TRUE NAME SO SOURCE
POINTER

A
AFTER LTE

Less Than
or Equal

* ; SI INTEGER-
IZE

LINK TO
FIELD(IN)

B
NOT GTE

Grtr Than
or Equal

+ : SD NEGATE LINK TO
STRUCTURE
(IN)

C AND LESS 9 LIMIT DE
1

LINK TO
SUB
STRUCTURE

LEFT
GROUP

D
OR NEQ

Not Equal

- EQUAL DS] LEFT
SUPER
GROUP

E JOIN GREATER FORMAT DL RIGHT
GROUP

F MASK
—• / INTERRUPT ST -

...

RIGHT
SUPER
GROUP

CHARACTER 0 AND 4 OF OBJECT STRING ONLY

www.manaraa.com

77

X. appendix II

www.manaraa.com

78

NAME TABLE CONTROL WORD

0 7 8 31 32 39 40 63

Flags Address Field 1 Flags Address Field 2

Block Control Word (Bit 1=1)

Flag Bits

0 - Control Word

1 - Block Start

2 - Block End

3 -

4 - Privileged Procedure

5 - Global Linking Done

6 - Forward Link Active

7 - Backward Link Active

37 - Block In Use

38 - Block Recursed

Address Field 1

Forward Link (threads all blocks
in the program).

Address Field 2

Backward Link (threads nested
blocks only).

Identifier Control Word (Bit 1

Flag Bits

0 - Control Word

1 - Block Start

2 - Block End

3
See Table Below

4 -

5 - Data In Object String

6 - Structured Data/Field

7 - Extended Entry

32 - ON Enabled Indicator

34 - Label Indicator

35 - Procedure Indicator

36 - Parameter Indicator

37 - ON Reference

Address Fields

Variable

Field 1 - Start Address

Field 2 - Current Address

www.manaraa.com

79

Variable With ON

Field .1 = Start Address

Field 2 = Link to ON Block

Procedure or Label

Field 1 = Link to Extended Entry

Field 2 = Link to ON Block

Flag Bits 3-4

00 - Default New (ordinary variables)

01 - One-Level Global (GLOBAL)

10 - Declared New

11 - Multi-Level Global (Procedure Call)

Flag Bits 0-3

1111 = Data in Name Table

www.manaraa.com

80

APPENDIX III

www.manaraa.com

81

SYMBOL SYNTAX

digit ::= 1|2|3|4|5[6|7[8|9|0

letter A|Bjc| [Y [z |a[b [c| |y|z

character ::=_any character except

spacer ::= a carriage-return, tab, or blank_

identifier ::= letterffletter|digit|spacer]
...(letter|digit)]

decimal-number digit...f.]jfdigit...].digit...

exponent-part ::=]^q[+|-][digit]digit

number ::= decimal-numberjexponent-part
I decimal-number exponent-part

string-number ::= [+}-][(digit],)...]number[EXiEM]

string :;=_sequence of zero or more of any characters

except < > J and

ds ::= [Lise"]"string]

data-structure ::= <dsfdata-structure ds]...>

Is :;= [List"I"identifier]

label-structure ::= <Is^label-structure Is]...'^

as ;:= rList"J"exp]

assignment-structure ::= <as[assignment-structure as],

component ::= identifier"r"List,exp"]"

partial-reference identifier"r"List,exp:exp"]"

procedure-call identifier["("List,exp")"]

literal ::= number]"J"string"]"

recipient ::= identifier]component]procedure-call

www.manaraa.com

82

arithmetic-op +|-|*|/

string-op JOIN|FORMAT]MASK

boolean-op ::= AND]OR

arithmetic-relation ::= GREATErC THAN]|GTE1eQUAL[S]|NEQ
|LTE1LESS[THAN]! < | < | = |=^| > | >

string-relation ::= BEFOREJSAME 1 AFTER

relational-op arithmetic-relationjstring-relation

dyadic-op ::= relational-op|arithmetic-op)string-op
I boolean-op

monadic-op : := +1 -1ABS|nOT

primitive-eiKp :literal|identifier[component|procedure-call
LIMIT[partial-reference jIN component

monadic-ccm ;;= monadic-op(primitive-expjdyadic-com
I "("exp")")

dyadic-com ::= exp dyadic-op(primitive-exp|dyadic-com
I"("exp")")

exp ::= primitive-exp|monadic-com[dyadic-com|"("exp")"

assignment-stm List,(recipient)LIMIT)expj
assignment-structure

link-stm ::= List,recipient ̂ LINK exp

go-to-stm ::= G0[TO J(identifier]component)procedure-call)

call-stm ;;= [CALL]procedure-call

pause-stm PAUSE

dummy-stm ::= [CONTINUE]

comment-stm ::= NOTE _any characters except

output-stm ::= OUTPUT(LTO exp,]List,exp]STRING
[to exp,]List,exp]dATA[to exp,]
List,identifier)

www.manaraa.com

83

input-stm ::= INPUT([EX 1 EM][FROM exp,jList,recipient
!STRING[FR0!M exp,]List,recipient
|DATA[FRQM exp])

initial-value-stm :identifier ("|"string"|"]data-structure)

switch-stm ::= SWITCH identifier label-structure

conditional-stm ::= IF exp THEN body [ELSE body] END

on-element-list ::= List,(identifier]INTERRUPT)

on-head ::= ON on-element-list

on-stm ::= on-head body END

on-control-stm ::= (DISASLEjENABLE)on-element-list

procedure-head ::= PROCEDURE identifier
["("List,identifier")"];

procedure-stm ::= procedure-head body END

return-stm RETURN [exp]

block-stm ::= BLOCK body END

environment-stm ::= block-stm| on-stm|procedure-stm

scope-stm ::= GLOBAL List,identifier

compound-stm conditional-stmlenvironment-stm

memory-op ::= AG|DEJDLIDSJFD|FFIFL|FR|FT 1IG|SA|SD|SI 1 SO 1 ST

memory-stm ::= memory-op identifier

break-stm ::= SYSTEM!TRAP

restricted-stm ::= break-stm|memory-stm

stm ;:= identifier:stmjassignmenc-scmigo-to-stm| call-stm
I dummy-stmIcomment-stmLoutput-stm|input-stm
I initial-value-stm|on-control-stm]return-stm
Ipause-stmlswitch-stmjscope-stmlrestricted-stm
jcompound-stm]link-stm

body ::= [Listjstm]

program : := bodŷ

	1973
	A formal description of SYMBOL
	Cheng-Wen Cheng
	Recommended Citation

	tmp.1412953925.pdf.RvfTM

